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The Java Specialist Master Course

Background
lDr Heinz Kabutz 

– Lives in Χωραφάκια, Χανιά 
– The Java Specialists’ Newsletter 

• 70 000 readers in 134 countries 
• http://www.javaspecialists.eu 

– Java Champion
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Productive Coder
How you can have more fun interacting 
with your machine … 

… and make your computer less 
frustrated with having you as operator
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Human vs 
Computer
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Machine.join()
l Typical coder works 60 hours per week 

– Unless you’re a startup, then 120 more likely 
– We all want maximum of 40 hours 

lCoder & machine should be one 
– Feel the machine 
– Understand the machine 
– Speak nicely to the machine :-)
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Human Mind Reading
lHuman Computer Interaction is 

progressing slowly 
– You should be able to type this whilst at the 

same time watching TV. 
– When you make a typing error, you should 

know that you have made it without looking at 
the screen
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Keyboard Skills
lNot all coders can touch type 

– Each keyboard has dimple for index fingers 
– Finger controls the buttons above and below it 

l Initial investment of about 20 hours
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Avoid Point & Click Coding
l Try to mainly use the keyboard – 

minimise mouse use 
– Menu driven copy & paste … 

lEuropean keyboard layouts bad for 
coding 
– Semicolon and curly braces 
– Use US keyboard layout and type blindly
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Keyboard Magic
lBack to the basics of working with 

computers 
– Applies to any language, not just Java 

lBut, Java’s IDEs make this approach 
even more productive
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Keyboard Shortcuts
lMemorise as many as possible 

– Use them frequently 

lEvery IDE is different 
– Sometimes on purpose it seems 
– CTRL+D in IntelliJ & Eclipse 

l Learn vim 
– Productive for small jobs 
– Good discipline in keyboard use
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Keyboard Stickers
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Dragon Naturally Speaking
l “Type” at 100 words per minute 

lUseful for JavaDocs 

lChallenging in noisy cubevile office 
environment 
– or home office “papa, can I play with the ipad?”
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The Right Kind 
of Lazy
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“Cheaper by the Dozen”
lBook from 1948 

– Story of efficiency experts 
– Always studied the laziest factory worker 

l In coding we want good kind of lazy 
– Too lazy - Benny Darren* 
– Not lazy enough - George Happy* 
– Think Lazy - Sascha Schafskopf*

15

* names changed to protect the guilty
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Benny Darren - Too Lazy
l The Copy & Paste Programmer 

– Extremely “productive” 
– Crazy lines of code per day (LOC) 
– Features produced at alarming speed 

lAnd then the bug reports came in …
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George Happy - !Lazy Enough
lWorked in a non-IT job before 

– But took “typing” as a school subject 

lCode burned my eyes 
– Deleted!!!
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Sascha Schafskopf
lCoded without thinking 

– Resulting code was overly complex 
– Didn’t bother learning the Java API
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public void removeAlarmContainerFromTable( 
    AlarmContainer ac) { 
  int i; 
  HistoricalAlarmContainer h=null; 
  for (i=0; i<rows.size(); i++) { 
    h= getAlarmContainer(i); 
    if (h.getAlarmInfo().getUniqueID() 
        ==ac.getAlarmInfo().getUniqueID()) 
      i=Integer.MAX_VALUE-1; 
  } 
  if (i==Integer.MAX_VALUE) { 
    rows.removeElement(h); 
  } 
}
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Sorting by toString() Value
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public Vector sortVector (Vector unsorted) { 
  Vector sorted = new Vector(); 
  Vector sortingVector = new Vector(); 
  for (int i=0; unsorted.size() > i ; i++) { 
    String temp = unsorted.get(i).toString(); 
    sortingVector.add(temp); 
  } 
  Collections.sort(sortingVector); 
  sortingVector.trimToSize(); 
  for (int i=0; i < sortingVector.size(); i++) { 
    for (int j=0; j < sortingVector.size(); j++) { 
      if (sortingVector.get(i) == unsorted.get(j).toString()) { 
        sorted.add(i, unsorted.get(j)); 
      } 
    } 
  } 
  return sorted; 
}
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Horrible, but at least correct
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public <E> Vector<E> sortVector(Vector<E> unsorted) { 
  Vector<E> sorted = new Vector<>(unsorted); 
  Collections.sort(sorted, new Comparator<E>() { 
    public int compare(E e1, E e2) { 
      return String.valueOf(e1).compareTo(String.valueOf(e2)); 
    } 
  }); 
  return sorted; 
}
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Java 8 Lambdas - Yippee!
lBetter or worse?  Help me decide!
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public <E> Vector<E> sortVector(Vector<E> unsorted) { 
  Vector<E> sorted = new Vector<>(unsorted); 
  Collections.sort(sorted, (e1, e2) ->  
      String.valueOf(e1).compareTo(String.valueOf(e2))); 
  return sorted; 
}
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Java 8 Comparator.comparing()
lKnowing API leads to shorter, cleaner 

code
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public <E> Vector<E> sortVector(Vector<E> unsorted) { 
  Vector<E> sorted = new Vector<>(unsorted); 
  Collections.sort(sorted, 
    Comparator.comparing(String::valueOf)); 
  return sorted; 
}
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Know Your IDE
lNo matter if IDEA, Eclipse or Netbeans 

lShort coding demo 
– Extreme Java - Concurrency Course Exercise 

• synchronized to ReentrantReadWriteLock 
– First attempt is by hand, but using IDE 
– Next attempt is easier - live code templates 
– Next with lambdas and then try-with-resource
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Quick Demo
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Coding with 
Lambda Idioms
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Lambda Locking Idioms
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public static <T> T lock(Lock lock, Supplier<T> task) { 
  lock.lock(); 
  try {  
    return task.get(); 
  } finally { 
    lock.unlock(); 
  } 
}  

public static void lock(Lock lock, Runnable task) { 
  lock.lock(); 
  try {  
    task.run(); 
  } finally { 
    lock.unlock(); 
  } 
}
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ReadWriteLock Idioms
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public static <T> T readLock( 
    ReadWriteLock rwlock, Supplier<T> task) { 
  return lock(rwlock.readLock(), task); 
}  
 
public static void readLock( 
    ReadWriteLock rwlock, Runnable task) { 
  lock(rwlock.readLock(), task); 
}  
 
public static <T> T writeLock( 
    ReadWriteLock rwlock, Supplier<T> task) { 
  return lock(rwlock.writeLock(), task); 
}  
 
public static void writeLock( 
    ReadWriteLock rwlock, Runnable task) { 
  lock(rwlock.writeLock(), task); 
}
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LambdaReadWriteLock
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public class LambdaReadWriteLock { 
  private final ReentrantReadWriteLock rwlock; 
 
  public LambdaReadWriteLock( 
      ReentrantReadWriteLock rwlock) { 
    this.rwlock = rwlock; 
  } 
 
  public <T> T readLock(Supplier<T> task) { 
    return LockIdioms.readLock(rwlock, task); 
  } 

  // etc.
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writeLock() Deadlock Check
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public void writeLock(Runnable task) { 
  checkThatWeDoNotHoldReadLocks(); 
  LockIdioms.writeLock(rwlock, task); 
}  
 
private void checkThatWeDoNotHoldReadLocks() { 
  if (rwlock.getReadHoldCount() != 0) { 
    throw new IllegalMonitorStateException( 
      "trying to upgrade read to write"); 
  } 
}
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Lambda Idiom Meet Exception
l Lambdas do not “play nice” with 

checked exceptions 

lCallable can easily result in ambiguity
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LockIdioms.lock(lock, () -> Thread.sleep(10));
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Java 7 “Try-With-Resource”
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public class LockResource implements AutoCloseable { 
  private final Lock lock; 
 
  public LockResource(Lock lock) { 
    this.lock = lock; 
  } 
 
  public LockResource lock() { 
    lock.lock(); 
    return this;  
  } 
 
  public void close() { 
    lock.unlock(); 
  } 
}
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Try-With-Resource
lProgram flow is no longer interrupted 

by lambda context
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try (LockResource lr = lock.lock()) { 
  Thread.sleep(10); 
}
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More Lambda Idioms
lStampedLock introduced in Java 8 

– Described in JavaSpecialists.eu - issue 215 

lAllows 
– pessimistic exclusive locks (write) 
– pessimistic non-exclusive locks (read) 
– optimistic read with good collision detection 

l Idioms are much harder than Lock
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Design 
Patterns
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Fingers Overtaking the Brain
lYou still need to plan 

– Stop & think before you start 

lWhen shortcuts & fingers  
are too fast: 
– Increase speed of your brain 
– Think in higher level concepts, such as Design 

Patterns
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Design Patterns
lMainstream of OO landscape, offering 

us: 
– View into brains of OO experts 
– Quicker understanding of  

existing designs 
• e.g. Visitor pattern used by  

Annotation Processing Tool 
– Improved communication  

between developers 
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Vintage Wines
lDesign Patterns are like good red wine 

– You cannot appreciate them at first 
– As you study them you learn the difference 

between plonk and vintage, or bad and good 
designs 

– As you become a connoisseur you experience 
the various textures you didn’t notice before 

lWarning: Once you are hooked, you will 
no longer be satisfied with inferior 
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Refactoring
How to shoot yourself in your foot in style
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“Houston, We Have a Problem”
l “Our lead developer has left” 

– Software works most of the time 
– We have to fix it, and add some features …
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How do you start?
lAsk some basic questions 

– What code is dead? 
• Stories of whole teams working on dead code 

for years 
– Where are the unit test? 
– Where could access control be tighter? 
– What portion of code is commented? 
– How can I find bad code?  Copy & paste code?
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Initial Investigation
lCheck where comments are missing 

– Doclet in Newsletter 049 

l Find fields that are not private 
– Doclet in Newsletter 035
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Initial Investigation
lCount # of classes, lines of code each 

– Aim for average of less than 100 lines per class 
– One of my customers had one Java class > 

30000 LOC 

lCode coverage tool against unit tests 
– JaCoCo by Marc Hoffmann
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What are Realistic Values?

lBeware, LOC is only a rough guess

# Classes Total LOC  
AVG/STDEV

Uncommented 
Elements

Project 1  
South Africa

1359 263790 
194 / 337

24291 
18 per class

Project 2  
Germany

442 62393 
141 / 149

7298  
17 per class

Ideal 1000 80260 
80 / 61

1000 max 
1 per class



The Java Specialist Master Course 44

Comments must Explain “Why”
lComment tips 

– Should not just be: Method getName returns 
the name. 

– Turn off automatic comment generation 
– Either proper comments, or leave them out 
– Method names and parameters should be 

descriptive
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Comments must Explain “Why”
l “Why I don’t read your code comments 
…” 
– Most misunderstood newsletter - Issue 039 
– I do write my own comments, but about “why” 

not “what” 
– seldom find projects with well-written comments
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Comments: j.a.c.ColorSpace
lRather insightful comment in JDK 1.3: 

lWhat is “REMIND” supposed to tell us?
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/** 
 * Returns the name of the component given the 
 * component index 
 */ 
public String getName(int idx) { 
  /* REMIND - handle common cases here */ 
  return new String( 
      "Unnamed color component(" + idx + ")");  
}
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Comments: j.a.c.ColorSpace
l JDK 1.4: more text, still the question 
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/** 
 * Returns the name of the component given the 
 * component index. 
 *  
 * @param idx The component index. 
 * @return The name of the component at the 
 * specified index. 
 */ 
public String getName(int idx) { 
 /* REMIND - handle common cases here */ 
  return new String( 
      "Unnamed color component(" + idx + ")"); 
}
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Java 5
/** Returns the name of the component given the  
 * component index.    
 * @param idx The component index.  
 * @return The name of the component at the 
 * specified index.  
 * @throws IllegalArgumentException if idx is less 
 * than 0 or greater than numComponents – 1 */  
public String getName (int idx) {  
  /* REMIND - handle common cases here */  
  if ((idx < 0) || (idx > numComponents - 1)) { 
    throw new IllegalArgumentException( 
      "Component index out of range: " + idx); 
  }   
  return new String( 
    "Unnamed color component("+idx+")");  
}
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Java 6 onwards
   /** Returns the name of the component given the  

 * component index.    
 * @param idx The component index.  
 * @return The name of the component at the 
 * specified index.  
 * @throws IllegalArgumentException if idx is less 
 * than 0 or greater than numComponents – 1 */  
public String getName (int idx) {  
  /* REMIND - handle common cases here */  
  if ((idx < 0) || (idx > numComponents - 1)) { 
    throw new IllegalArgumentException( 
      "Component index out of range: " + idx); 
 } 

   if (compName == null) { 
      switch (type) { 
        case ColorSpace.TYPE_XYZ: 
        compName = new String[] {"X", "Y", "Z"}; break;
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Commenting Out Code
lSource Control Systems 

– Have been around for decades 

lDon’t duplicate source control work 

l If code is dead, delete it, don’t comment 
it out
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Funny Comments
l JDK 1.3: java.io.ObjectStreamClass 

private final static Class[] NULL_ARGS = {}; 
//WORKAROUND compiler bug with following code.  
//static final Class[]OIS_ARGS={ObjectInpuStream.class};  
//static final Class[]OOS_ARGS={ObjectOutpuStream.class};  
private static Class[] OIS_ARGS = null;  
private static Class[] OOS_ARGS = null;  
private static void initStaticMethodArgs() {   
  OOS_ARGS = new Class[1];  
  OOS_ARGS[0] = ObjectOutputStream.class;  
  OIS_ARGS = new Class[1];  
  OIS_ARGS[0] = ObjectInputStream.class;  
} 

l “The compiler team is writing useless code again …” 
– http://www.javaspecialists.eu/archive/Issue046.html

Shouldn’t that be  
ObjectInputStream?

http://www.javaspecialists.eu/archive/Issue046.html
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“Wonderfully Disgusting Hack”
l JDK 1.4: java.awt.Toolkit 

static boolean enabledOnToolkit(long eventMask) {  
// Wonderfully disgusting hack for Solaris 9 

l This made me think: 
– All software contains hacks.  
– I would prefer to know about them.  
– Only a real developer would write "hack" into his 

comments.  
– Rather use Java than black-box proprietary solution 

with hundreds of undocumented hacks
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Before You Change Code…
lRefactoring is dangerous! 

lYou must have good unit tests 
– And great skill if you don’t have unit tests… 

lAlso system tests 

l In troubled projects, unit tests often 
absent
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Automatic Refactoring in IDEs
l IDEs tempt us to refactor code quickly 

– But result might be incorrect 

lBe careful, very careful 
– Inlining is not always correct 
– Method extraction is not always correct 
– Replace duplicate code snippet is not always 

correct
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Automatic Tools and Reflection
l Java tools rely on static compilation of 

classes 

lBe careful when using Reflection and 
Dynamic Proxies
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Check your code
lRegularly check your own work: 

– Elements are properly commented 
– Exceptions are handled correctly 
– Fields are private 
– Fields are final where possible 
– Unit tests cover your code base 
– Look for copy & paste code 

• Sometimes difficult to eliminate
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Develop with Pleasure!
lSimplicity is beauty
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Advanced Java Courses Crete
lExtreme Java - Concurrency Performance 

– 3 days, price of €2767.50 
– Week June 8-12, 2015 

l Java Specialist Master Course 
– 4 days, price of €3075 
– June 23-26, 2015 

lwww.javaspecialists.eu 

l heinz@javaspecialists.eu
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Live Productive 
Coder

Dr Heinz M. Kabutz  
 

www.javaspecialists.eu 
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