
The Java Specialist Master Course

Live Productive
Coder

Dr Heinz M. Kabutz  
Last modified 2015-05-15 

www.javaspecialists.eu

© 2007-2015 Heinz Max Kabutz – All Rights Reserved

The Java Specialist Master Course

Background
lDr Heinz Kabutz

– Lives in Χωραφάκια, Χανιά
– The Java Specialists’ Newsletter

• 70 000 readers in 134 countries
• http://www.javaspecialists.eu

– Java Champion

2

The Java Specialist Master Course 3

The Java Specialist Master Course 4

Productive Coder
How you can have more fun interacting
with your machine …

… and make your computer less
frustrated with having you as operator

The Java Specialist Master Course

Human vs
Computer

5

The Java Specialist Master Course 6

Machine.join()
l Typical coder works 60 hours per week

– Unless you’re a startup, then 120 more likely
– We all want maximum of 40 hours

lCoder & machine should be one
– Feel the machine
– Understand the machine
– Speak nicely to the machine :-)

The Java Specialist Master Course 7

Human Mind Reading
lHuman Computer Interaction is

progressing slowly
– You should be able to type this whilst at the

same time watching TV.
– When you make a typing error, you should

know that you have made it without looking at
the screen

The Java Specialist Master Course 8

Keyboard Skills
lNot all coders can touch type

– Each keyboard has dimple for index fingers
– Finger controls the buttons above and below it

l Initial investment of about 20 hours

The Java Specialist Master Course 9

Avoid Point & Click Coding
l Try to mainly use the keyboard –

minimise mouse use
– Menu driven copy & paste …

lEuropean keyboard layouts bad for
coding
– Semicolon and curly braces
– Use US keyboard layout and type blindly

The Java Specialist Master Course

Keyboard Magic
lBack to the basics of working with

computers
– Applies to any language, not just Java

lBut, Java’s IDEs make this approach
even more productive

10

The Java Specialist Master Course 11

Keyboard Shortcuts
lMemorise as many as possible

– Use them frequently

lEvery IDE is different
– Sometimes on purpose it seems
– CTRL+D in IntelliJ & Eclipse

l Learn vim
– Productive for small jobs
– Good discipline in keyboard use

The Java Specialist Master Course

Keyboard Stickers

12

The Java Specialist Master Course

Dragon Naturally Speaking
l “Type” at 100 words per minute

lUseful for JavaDocs

lChallenging in noisy cubevile office
environment
– or home office “papa, can I play with the ipad?”

13

The Java Specialist Master Course

The Right Kind
of Lazy

14

The Java Specialist Master Course

“Cheaper by the Dozen”
lBook from 1948

– Story of efficiency experts
– Always studied the laziest factory worker

l In coding we want good kind of lazy
– Too lazy - Benny Darren*
– Not lazy enough - George Happy*
– Think Lazy - Sascha Schafskopf*

15

* names changed to protect the guilty

The Java Specialist Master Course

Benny Darren - Too Lazy
l The Copy & Paste Programmer

– Extremely “productive”
– Crazy lines of code per day (LOC)
– Features produced at alarming speed

lAnd then the bug reports came in …

16

The Java Specialist Master Course

George Happy - !Lazy Enough
lWorked in a non-IT job before

– But took “typing” as a school subject

lCode burned my eyes
– Deleted!!!

17

The Java Specialist Master Course

Sascha Schafskopf
lCoded without thinking

– Resulting code was overly complex
– Didn’t bother learning the Java API

18

public void removeAlarmContainerFromTable(
 AlarmContainer ac) {
 int i;
 HistoricalAlarmContainer h=null;
 for (i=0; i<rows.size(); i++) {
 h= getAlarmContainer(i);
 if (h.getAlarmInfo().getUniqueID()
 ==ac.getAlarmInfo().getUniqueID())
 i=Integer.MAX_VALUE-1;
 }
 if (i==Integer.MAX_VALUE) {
 rows.removeElement(h);
 }
}

The Java Specialist Master Course

Sorting by toString() Value

19

public Vector sortVector (Vector unsorted) {
 Vector sorted = new Vector();
 Vector sortingVector = new Vector();
 for (int i=0; unsorted.size() > i ; i++) {
 String temp = unsorted.get(i).toString();
 sortingVector.add(temp);
 }
 Collections.sort(sortingVector);
 sortingVector.trimToSize();
 for (int i=0; i < sortingVector.size(); i++) {
 for (int j=0; j < sortingVector.size(); j++) {
 if (sortingVector.get(i) == unsorted.get(j).toString()) {
 sorted.add(i, unsorted.get(j));
 }
 }
 }
 return sorted;
}

The Java Specialist Master Course

Horrible, but at least correct

20

public <E> Vector<E> sortVector(Vector<E> unsorted) { 
 Vector<E> sorted = new Vector<>(unsorted); 
 Collections.sort(sorted, new Comparator<E>() {
 public int compare(E e1, E e2) { 
 return String.valueOf(e1).compareTo(String.valueOf(e2)); 
 }
 }); 
 return sorted; 
}

The Java Specialist Master Course

Java 8 Lambdas - Yippee!
lBetter or worse? Help me decide!

21

public <E> Vector<E> sortVector(Vector<E> unsorted) { 
 Vector<E> sorted = new Vector<>(unsorted); 
 Collections.sort(sorted, (e1, e2) ->  
 String.valueOf(e1).compareTo(String.valueOf(e2))); 
 return sorted; 
}

The Java Specialist Master Course

Java 8 Comparator.comparing()
lKnowing API leads to shorter, cleaner

code

22

public <E> Vector<E> sortVector(Vector<E> unsorted) { 
 Vector<E> sorted = new Vector<>(unsorted);
 Collections.sort(sorted,
 Comparator.comparing(String::valueOf)); 
 return sorted; 
}

The Java Specialist Master Course 23

Know Your IDE
lNo matter if IDEA, Eclipse or Netbeans

lShort coding demo
– Extreme Java - Concurrency Course Exercise

• synchronized to ReentrantReadWriteLock
– First attempt is by hand, but using IDE
– Next attempt is easier - live code templates
– Next with lambdas and then try-with-resource

The Java Specialist Master Course

Quick Demo

24

The Java Specialist Master Course

Coding with
Lambda Idioms

25

The Java Specialist Master Course

Lambda Locking Idioms

26

public static <T> T lock(Lock lock, Supplier<T> task) { 
 lock.lock(); 
 try {  
 return task.get(); 
 } finally { 
 lock.unlock(); 
 } 
}  

public static void lock(Lock lock, Runnable task) { 
 lock.lock(); 
 try {  
 task.run(); 
 } finally { 
 lock.unlock(); 
 } 
}

The Java Specialist Master Course

ReadWriteLock Idioms

27

public static <T> T readLock( 
 ReadWriteLock rwlock, Supplier<T> task) { 
 return lock(rwlock.readLock(), task); 
}  
 
public static void readLock( 
 ReadWriteLock rwlock, Runnable task) { 
 lock(rwlock.readLock(), task); 
}  
 
public static <T> T writeLock( 
 ReadWriteLock rwlock, Supplier<T> task) { 
 return lock(rwlock.writeLock(), task); 
}  
 
public static void writeLock( 
 ReadWriteLock rwlock, Runnable task) { 
 lock(rwlock.writeLock(), task); 
}

The Java Specialist Master Course

LambdaReadWriteLock

28

public class LambdaReadWriteLock { 
 private final ReentrantReadWriteLock rwlock; 
 
 public LambdaReadWriteLock(
 ReentrantReadWriteLock rwlock) { 
 this.rwlock = rwlock; 
 } 
 
 public <T> T readLock(Supplier<T> task) { 
 return LockIdioms.readLock(rwlock, task); 
 }

 // etc.

The Java Specialist Master Course

writeLock() Deadlock Check

29

public void writeLock(Runnable task) { 
 checkThatWeDoNotHoldReadLocks(); 
 LockIdioms.writeLock(rwlock, task); 
}  
 
private void checkThatWeDoNotHoldReadLocks() { 
 if (rwlock.getReadHoldCount() != 0) { 
 throw new IllegalMonitorStateException(
 "trying to upgrade read to write"); 
 } 
}

The Java Specialist Master Course

Lambda Idiom Meet Exception
l Lambdas do not “play nice” with

checked exceptions

lCallable can easily result in ambiguity

30

LockIdioms.lock(lock, () -> Thread.sleep(10));

The Java Specialist Master Course

Java 7 “Try-With-Resource”

31

public class LockResource implements AutoCloseable { 
 private final Lock lock; 
 
 public LockResource(Lock lock) { 
 this.lock = lock; 
 } 
 
 public LockResource lock() { 
 lock.lock(); 
 return this;  
 } 
 
 public void close() { 
 lock.unlock(); 
 } 
}

The Java Specialist Master Course

Try-With-Resource
lProgram flow is no longer interrupted

by lambda context

32

try (LockResource lr = lock.lock()) { 
 Thread.sleep(10); 
}

The Java Specialist Master Course

More Lambda Idioms
lStampedLock introduced in Java 8

– Described in JavaSpecialists.eu - issue 215

lAllows
– pessimistic exclusive locks (write)
– pessimistic non-exclusive locks (read)
– optimistic read with good collision detection

l Idioms are much harder than Lock

33

The Java Specialist Master Course

Design
Patterns

34

The Java Specialist Master Course 35

Fingers Overtaking the Brain
lYou still need to plan

– Stop & think before you start

lWhen shortcuts & fingers  
are too fast:
– Increase speed of your brain
– Think in higher level concepts, such as Design

Patterns

The Java Specialist Master Course 36

Design Patterns
lMainstream of OO landscape, offering

us:
– View into brains of OO experts
– Quicker understanding of  

existing designs
• e.g. Visitor pattern used by  

Annotation Processing Tool
– Improved communication  

between developers

The Java Specialist Master Course 37

Vintage Wines
lDesign Patterns are like good red wine

– You cannot appreciate them at first
– As you study them you learn the difference

between plonk and vintage, or bad and good
designs

– As you become a connoisseur you experience
the various textures you didn’t notice before

lWarning: Once you are hooked, you will
no longer be satisfied with inferior

The Java Specialist Master Course

Refactoring
How to shoot yourself in your foot in style

38

The Java Specialist Master Course 39

“Houston, We Have a Problem”
l “Our lead developer has left”

– Software works most of the time
– We have to fix it, and add some features …

The Java Specialist Master Course 40

How do you start?
lAsk some basic questions

– What code is dead?
• Stories of whole teams working on dead code

for years
– Where are the unit test?
– Where could access control be tighter?
– What portion of code is commented?
– How can I find bad code? Copy & paste code?

The Java Specialist Master Course 41

Initial Investigation
lCheck where comments are missing

– Doclet in Newsletter 049

l Find fields that are not private
– Doclet in Newsletter 035

The Java Specialist Master Course 42

Initial Investigation
lCount # of classes, lines of code each

– Aim for average of less than 100 lines per class
– One of my customers had one Java class >

30000 LOC

lCode coverage tool against unit tests
– JaCoCo by Marc Hoffmann

The Java Specialist Master Course 43

What are Realistic Values?

lBeware, LOC is only a rough guess

Classes Total LOC  
AVG/STDEV

Uncommented
Elements

Project 1  
South Africa

1359 263790 
194 / 337

24291 
18 per class

Project 2  
Germany

442 62393 
141 / 149

7298  
17 per class

Ideal 1000 80260 
80 / 61

1000 max 
1 per class

The Java Specialist Master Course 44

Comments must Explain “Why”
lComment tips

– Should not just be: Method getName returns
the name.

– Turn off automatic comment generation
– Either proper comments, or leave them out
– Method names and parameters should be

descriptive

The Java Specialist Master Course 45

Comments must Explain “Why”
l “Why I don’t read your code comments
…”
– Most misunderstood newsletter - Issue 039
– I do write my own comments, but about “why”

not “what”
– seldom find projects with well-written comments

The Java Specialist Master Course

Comments: j.a.c.ColorSpace
lRather insightful comment in JDK 1.3:

lWhat is “REMIND” supposed to tell us?

46

/** 
 * Returns the name of the component given the 
 * component index 
 */ 
public String getName(int idx) { 
 /* REMIND - handle common cases here */ 
 return new String( 
 "Unnamed color component(" + idx + ")");  
}

The Java Specialist Master Course

Comments: j.a.c.ColorSpace
l JDK 1.4: more text, still the question

47

/** 
 * Returns the name of the component given the 
 * component index. 
 *  
 * @param idx The component index. 
 * @return The name of the component at the 
 * specified index. 
 */ 
public String getName(int idx) { 
 /* REMIND - handle common cases here */ 
 return new String( 
 "Unnamed color component(" + idx + ")"); 
}

The Java Specialist Master Course 48

Java 5
/** Returns the name of the component given the  
 * component index.  
 * @param idx The component index.  
 * @return The name of the component at the 
 * specified index.  
 * @throws IllegalArgumentException if idx is less 
 * than 0 or greater than numComponents – 1 */  
public String getName (int idx) {  
 /* REMIND - handle common cases here */  
 if ((idx < 0) || (idx > numComponents - 1)) { 
 throw new IllegalArgumentException( 
 "Component index out of range: " + idx); 
 }  
 return new String( 
 "Unnamed color component("+idx+")");  
}

The Java Specialist Master Course 49

Java 6 onwards
 /** Returns the name of the component given the  

 * component index.  
 * @param idx The component index.  
 * @return The name of the component at the 
 * specified index.  
 * @throws IllegalArgumentException if idx is less 
 * than 0 or greater than numComponents – 1 */  
public String getName (int idx) {  
 /* REMIND - handle common cases here */  
 if ((idx < 0) || (idx > numComponents - 1)) { 
 throw new IllegalArgumentException( 
 "Component index out of range: " + idx); 
 }

 if (compName == null) {
 switch (type) {
 case ColorSpace.TYPE_XYZ:
 compName = new String[] {"X", "Y", "Z"}; break;

The Java Specialist Master Course 50

Commenting Out Code
lSource Control Systems

– Have been around for decades

lDon’t duplicate source control work

l If code is dead, delete it, don’t comment
it out

The Java Specialist Master Course 51

Funny Comments
l JDK 1.3: java.io.ObjectStreamClass 

private final static Class[] NULL_ARGS = {}; 
//WORKAROUND compiler bug with following code.  
//static final Class[]OIS_ARGS={ObjectInpuStream.class};  
//static final Class[]OOS_ARGS={ObjectOutpuStream.class};  
private static Class[] OIS_ARGS = null;  
private static Class[] OOS_ARGS = null;  
private static void initStaticMethodArgs() {  
 OOS_ARGS = new Class[1];  
 OOS_ARGS[0] = ObjectOutputStream.class;  
 OIS_ARGS = new Class[1];  
 OIS_ARGS[0] = ObjectInputStream.class;  
}

l “The compiler team is writing useless code again …”
– http://www.javaspecialists.eu/archive/Issue046.html

Shouldn’t that be  
ObjectInputStream?

http://www.javaspecialists.eu/archive/Issue046.html

The Java Specialist Master Course 52

“Wonderfully Disgusting Hack”
l JDK 1.4: java.awt.Toolkit 

static boolean enabledOnToolkit(long eventMask) {  
// Wonderfully disgusting hack for Solaris 9

l This made me think:
– All software contains hacks.
– I would prefer to know about them.
– Only a real developer would write "hack" into his

comments.
– Rather use Java than black-box proprietary solution

with hundreds of undocumented hacks

The Java Specialist Master Course 53

Before You Change Code…
lRefactoring is dangerous!

lYou must have good unit tests
– And great skill if you don’t have unit tests…

lAlso system tests

l In troubled projects, unit tests often
absent

The Java Specialist Master Course

Automatic Refactoring in IDEs
l IDEs tempt us to refactor code quickly

– But result might be incorrect

lBe careful, very careful
– Inlining is not always correct
– Method extraction is not always correct
– Replace duplicate code snippet is not always

correct

54

The Java Specialist Master Course 55

Automatic Tools and Reflection
l Java tools rely on static compilation of

classes

lBe careful when using Reflection and
Dynamic Proxies

The Java Specialist Master Course 56

Check your code
lRegularly check your own work:

– Elements are properly commented
– Exceptions are handled correctly
– Fields are private
– Fields are final where possible
– Unit tests cover your code base
– Look for copy & paste code

• Sometimes difficult to eliminate

The Java Specialist Master Course 57

Develop with Pleasure!
lSimplicity is beauty

The Java Specialist Master Course

Advanced Java Courses Crete
lExtreme Java - Concurrency Performance

– 3 days, price of €2767.50
– Week June 8-12, 2015

l Java Specialist Master Course
– 4 days, price of €3075
– June 23-26, 2015

lwww.javaspecialists.eu

l heinz@javaspecialists.eu

58

The Java Specialist Master Course 59

Live Productive
Coder

Dr Heinz M. Kabutz  
 

www.javaspecialists.eu

© 2007-2015 Heinz Max Kabutz – All Rights Reserved

